A perspective on 4D bioprinting
Journal Title: International Journal of Bioprinting - Year 2016, Vol 2, Issue 1
Abstract
3D bioprinting has been invented for more than a decade. A disruptive progress is still lacking for the field to significantly move forward. Recently, the invention of 4D printing technology may point a way and hence the birth of 4D bioprinting. However, 4D bioprinting is not well defined and appear to have a few distinct early forms. In this article, a personal perspective on the early forms of 4D bioprinting is presented and a definition for 4D bioprinting is proposed.
Authors and Affiliations
Jia An, Chee Kai Chua1 and Vladimir Mironov
Uncovering 3D bioprinting research trends: A keyword network mapping analysis
A scientometric analysis as part of a Competitive Technology Intelligence methodology was used to determine the main research efforts in 3D bioprinting. Papers from Scopus and Web of Science (WoS) published between 2000...
Analysis of the knowledge landscape of three-dimensional bioprinting in Latin America
Bioprinting, the printing of living cells using polymeric matrixes (mainly hydrogels), has attracted great attention among science and technology circles. North America has been one of the sources of bioprinting-related...
Colony development of laser printed eukaryotic (yeast and microalga) microorganisms in co-culture
Laser Induced Forward Transfer (LIFT) bioprinting is one of a group of techniques that have been largely applied for printing mammalian cells so far. Bioprinting allows precise placement of viable cells in a defined matr...
Hydrolytic Expansion Induces Corrosion Propagation for Increased Fe Biodegradation
Fe is regarded as a promising bone implant material due to inherent degradability and high mechanical strength, but its degradation rate is too slow to match the healing rate of bone. In this work, hydrolytic expansion w...
Artificial vascularized scaffolds for 3D-tissue regeneration — a report of the ArtiVasc 3D Project
The aim of this paper is to raise awareness of the ArtiVasc 3D project and its findings. Vascularization is one of the most important and highly challenging issues in the development of soft tissue. It is necessary to su...