Analysis of the knowledge landscape of three-dimensional bioprinting in Latin America
Journal Title: International Journal of Bioprinting - Year 2019, Vol 5, Issue 2
Abstract
Bioprinting, the printing of living cells using polymeric matrixes (mainly hydrogels), has attracted great attention among science and technology circles. North America has been one of the sources of bioprinting-related technology in recent years. As a natural consequence of geography, high-quality research in the area of bioprinting has started to permeate Latin America. Here, we describe and analyze the knowledge landscape of bioprinting in Latin America using a competitive technology intelligence methodology. Our analysis provides relevant information, such as the scientific publication trends in Latin America and the scientific networks among research groups in Latin America and the world.
Authors and Affiliations
Marisela Rodríguez-Salvador, Diego Villarreal-Garza, Mario Moisés Álvarez, Grissel Trujillo-de Santiago
Optimization of a 3D bioprinting process using ultrashort peptide bioinks
The field of three-dimensional (3D) bioprinting is rapidly emerging as an additive manufacturing method for tissue and organ fabrication. The demand for tissues and organ transplants is ever increasing, although donors a...
An nMgO containing scaffold: Antibacterial activity, degradation properties and cell responses
Bone repair failure caused by implant-related infections is a common and troublesome problem. In this study, an antibacterial scaffold was developed via selective laser sintering with incorporating nano magnesium oxide (...
A novel 3D printing method for cell alignment and differentiation
The application of bioprinting allows precision deposition of biological materials for bioengineering applications. Here we propose a 2 stage methodology for bioprinting using a back pressure-driven, automated robotic di...
Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds
Three-dimensional (3D) printing has been emerging as a new technology for scaffold fabrication to overcome the problems associated with the undesirable microstructure associated with the use of traditional methods. Solve...
3D bioprinting technology for regenerative medicine application
Alternative strategies that overcome existing organ transplantation methods are of increasing importance because of ongoing demands and lack of adequate organ donors. Recent improvements in tissue engineering techniques...