Electrical properties of UHMWPE/graphite nanoplates composites obtained by in-situ polymerization method

Journal Title: Polyolefins Journal - Year 2017, Vol 4, Issue 1

Abstract

There are described nanocomposites based on ultra high molecular weight polyethylene and graphite nanoplates prepared by in-situ polymerization method. It is carried out a comprehensive study of electric properties of these composites, including direct current (dc) and alternating current (ac) properties. There is explored dependence of the conductivity and dielectric permeability on filler concentration, temperature, deformation and frequency of electric field. These relationships are compared with those for composites based on other carbon fillers including both nanoscale (carbon nanotubes, carbon black) and micron-sized (graphite, schungite) fillers. More specific electrical properties of investigated materials such as lower percolation threshold and higher dielectric permittivity compared to those for composites based on other carbon fillers are attributed to the plate-like shape of graphite nanoplates. These materials are distinguished also by their high electrical stability against temperature and deformation. Therefore, it makes graphite nanoplates the most preferable conductive filler for some practical applications. Some possible application areas for UHMWPE/graphite nanoplates nanocomposites will be also discussed.

Authors and Affiliations

Igor Chmutin, Ludmila Novokshonova, Petr Brevnov, Guzel Yukhayeva, Natalia Ryvkina

Keywords

Related Articles

Embedding neat and carboxylated nanodiamonds into polypropylene membranes to enhance antifouling properties

The aim of the present work is to enhance the antifouling properties of polypropylene (PP) membrane based on hydrophilicity improvement. Different contents of neat and modifed nanodiamond (0.25, 0.50, 0.75 and 1.00 wt.%)...

Imido-modified SiO2-supported Ti/Mg Ziegler-Natta catalysts for ethylene polymerization and ethylene/1-hexene copolymerization

A novel imido-modified SiO2-supported Ti/Mg Ziegler-Natta catalyst for ethylene and ethylene/1-hexene polymerization is investigated. The catalyst is prepared by modification of (SiO2/MgO/MgCl2)TiClx Ziegler-Natta cataly...

Intelligent catalysts for ethylene oligomerization and polymerization

Ethylene polymerization catalysts became available in an enormous variety. The challenge in this research is to find catalysts that are able to connect ethylene molecules in such a way that not only linear chains are pro...

How can pH value during catalyst preparation affect the performance of vanadium-modified (SiO2/MgO/ MgCl2)•TiClx Ziegler-Natta polyethylene catalysts

Vanadium-modified (SiO2/MgO/MgCl2)•TiClx Ziegler-Natta catalysts were prepared through co-impregnation of water-soluble magnesium and vanadium salts under different pH values. Several key factors such as pH value of co-i...

Role of covalent bond formation in morphology and properties of PP/PP-g-PS binary blends

PP-g-PS copolymer is a typical compatilizer used in polypropylene and polystyrene immiscible blends. PP-g-PS copolymers with different side chain lengths were synthesized, and their thermal and mechanical properties were...

Download PDF file
  • EP ID EP283187
  • DOI 10.22063/POJ.2016.1384
  • Views 110
  • Downloads 0

How To Cite

Igor Chmutin, Ludmila Novokshonova, Petr Brevnov, Guzel Yukhayeva, Natalia Ryvkina (2017). Electrical properties of UHMWPE/graphite nanoplates composites obtained by in-situ polymerization method. Polyolefins Journal, 4(1), 1-12. https://europub.co.uk/articles/-A-283187