Intelligent catalysts for ethylene oligomerization and polymerization

Journal Title: Polyolefins Journal - Year 2015, Vol 2, Issue 1

Abstract

Ethylene polymerization catalysts became available in an enormous variety. The challenge in this research is to find catalysts that are able to connect ethylene molecules in such a way that not only linear chains are produced but variations like branched materials that possess very interesting mechanical properties like linear low density polyethylene (LLDPE). In this contribution, three different types of catalysts are presented that are able to do not only one job at a time but three. These are “intelligent catalysts”. Catalysts of type 1 are homogeneous metallocene complexes that can be activated with methylaluminoxane (MAO).With ethylene they produce their own support and they become heterogeneous catalysts (self-immobilization) and they prevent fouling in polymerization reactors. The produced resin has evenly distributed ethyl branches (without a comonomer) with unique properties and the MAO that is necessary in the activation step can be recycled. Catalysts of type 2 are dinuclear complexes with two different active sites. One centre can oligomerize ethylene and the other one can copolymerize the in statu nascendi produced oligomers with ethylene to give branched LLDPE (a molecule as the smallest reactor for LLDPE) and/or bimodal resins. Catalysts of type 3 are MAO activated iron di (imino) pyridine complexes that are able to oligomerize ethylene to give not only oligomers with even numbered carbon atoms but also odd numbered ones. In this reaction, one catalyst does three jobs at a time: oligomerization, isomerization and metathesis of ethylene.

Authors and Affiliations

Helmut G. Alt

Keywords

Related Articles

Hydrophilic polypropylene microporous membrane for using in a membrane bioreactor system and optimization of preparation conditions by response surface methodology

In this study, the response surface methodology (RSM) based on the central composite design (CCD) was used to optimize the preparation condition of polypropylene-grafted maleic anhydride (PP-g-MA) microporous membrane by...

Synthesis and identifcation of polystyrene via conventional and controlled radical polymerization methods: Effect of temperature, initiator and transfer agent on molecular weight and reaction rate

Polystyrene (PSt) has been known as one of the important polymers with a wide range of applications. Ability to synthesize PSt with different but predictable molecular weights for various applications is very important i...

Probing into morphology evolution of magnesium ethoxide particles as precursor of Ziegler-Natta catalysts

Mg(OEt)2 with spherical morphology is one of the most important precursors for the preparation of industrial Ziegler-Natta catalysts. In the present article, morphology evolution of Mg(OEt)2 particles is studied in the c...

Study of Ziegler-Natta/(2-PhInd)2ZrCl2 hybrid catalysts performance in slurry propylene polymerization

Several types of hybrid catalysts are made through mixing of 4th generation Ziegler-Natta (ZN) and (2-PhInd)2ZrCl2 metallocene catalysts using triethylaluminum (TEA) as coupling agent. Response surface methodology (RSM)...

Electron beam irradiation method to change polypropylene application: Rheology and thermomechanical properties

Irradiation of polymers is one of the most effective and economical methods for modifying their properties and for changing their applications. In this study, an extrusion grade polypropylene (PP) was treated by electron...

Download PDF file
  • EP ID EP283080
  • DOI 10.22063/POJ.2015.1103
  • Views 167
  • Downloads 0

How To Cite

Helmut G. Alt (2015). Intelligent catalysts for ethylene oligomerization and polymerization. Polyolefins Journal, 2(1), 17-25. https://europub.co.uk/articles/-A-283080