Intelligent catalysts for ethylene oligomerization and polymerization

Journal Title: Polyolefins Journal - Year 2015, Vol 2, Issue 1

Abstract

Ethylene polymerization catalysts became available in an enormous variety. The challenge in this research is to find catalysts that are able to connect ethylene molecules in such a way that not only linear chains are produced but variations like branched materials that possess very interesting mechanical properties like linear low density polyethylene (LLDPE). In this contribution, three different types of catalysts are presented that are able to do not only one job at a time but three. These are “intelligent catalysts”. Catalysts of type 1 are homogeneous metallocene complexes that can be activated with methylaluminoxane (MAO).With ethylene they produce their own support and they become heterogeneous catalysts (self-immobilization) and they prevent fouling in polymerization reactors. The produced resin has evenly distributed ethyl branches (without a comonomer) with unique properties and the MAO that is necessary in the activation step can be recycled. Catalysts of type 2 are dinuclear complexes with two different active sites. One centre can oligomerize ethylene and the other one can copolymerize the in statu nascendi produced oligomers with ethylene to give branched LLDPE (a molecule as the smallest reactor for LLDPE) and/or bimodal resins. Catalysts of type 3 are MAO activated iron di (imino) pyridine complexes that are able to oligomerize ethylene to give not only oligomers with even numbered carbon atoms but also odd numbered ones. In this reaction, one catalyst does three jobs at a time: oligomerization, isomerization and metathesis of ethylene.

Authors and Affiliations

Helmut G. Alt

Keywords

Related Articles

Evaluation of effects of thymolphthalein on thermooxidative stability of polypropylene

The present work is aimed to find a new and efficient type of antioxidants for polypropylene. Hence, effects of 3,3-bis(4-hydroxy-2-methyl-5-propan-2-ylphenyl)-2-benzofuran-1-one, generally known as thymolphthalein, on t...

hermal behavior of ethylene/1-octene copolymer fractions at high temperatures: Effect of hexyl branch content

In this work, the effect of hexyl branch content on thermal behavior of a fractionated ethylene/1-octene copolymer with emphasis on high temperatures was investigated. The ethylene/1-octene copolymer was carefully fracti...

Quantification of identical and unique segments in ethylene-propylene copolymers using two dimensional liquid chromatography with infra-red detection

Hyphenating High Temperature High Performance Liquid Chromatography (HT-HPLC) with High Temperature Size Exclusion Chromatography (HT-SEC) (High Temperature Two Dimensional Liquid Chromatography (HT-HPLC x HT-SEC or HT 2...

Effect of multi-walled carbon nanotube on mechanical and rheological properties of silane modified EPDM rubber

A novel mixing approach for achieving a good dispersion of multi-walled carbon nanotubes (MWCNTs) in ethylene- propylene diene monomer (EPDM) matrix has been investigated. In this approach EPDM was modified with vinyltri...

Propene-cycloolefin polymerization

Highly active metallocenes and other single site catalysts have opened up the possibility of polymerizing cycloolefins such as norbornene (N) or of copolymerizing them with ethene (E) or propene (P). The polymers obtaine...

Download PDF file
  • EP ID EP283080
  • DOI 10.22063/POJ.2015.1103
  • Views 173
  • Downloads 0

How To Cite

Helmut G. Alt (2015). Intelligent catalysts for ethylene oligomerization and polymerization. Polyolefins Journal, 2(1), 17-25. https://europub.co.uk/articles/-A-283080