GENERALIZED RESOLVENTS OF OPERATORS GENERATED BY INTEGRAL EQUATIONS
Journal Title: Проблемы анализа-Issues of Analysis - Year 2018, Vol 7, Issue 2
Abstract
We define a minimal operator L_0 generated by an integral equation with an operator measure and give a description of the adjoint operator L∗_0. We prove that every generalized resolvent of L_0 is an integral operator and give a description of boundary value problems associated to generalized resolvents.
Authors and Affiliations
V. M. Bruk
THE THEOREM ON EXISTENCE OF SINGULAR SOLUTIONS TO NONLINEAR EQUATIONS
The aim of this paper is to present some applications of pregularity theory to investigations of nonlinear multivalued mappings. The main result addresses to the problem of existence of solutions to nonlinear equations i...
О КОЛИЧЕСТВЕ ЧИСЕЛ, ПОРОЖДЕННЫХ ПРОСТЫМИ ИЗ АРИФМЕТИЧЕСКИХ ПРОГРЕССИЙ И НЕ ПРЕВОСХОДЯЩИХ ДЕЙСТВИТЕЛЬНОГО ЧИСЛА
It is given the asimptotic expansion for number positive integer that not exceed of the real number and divisible by prime number from arithmetical progression in this paper.
ОЦЕНКИ РАЗНОСТЕЙ РЕШЕНИЙ НЕЛИНЕЙНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ В БАНАХОВОМ ПРОСТРАНСТВЕ
In this paper we consider estimations of difference of nonlinear integral equations in Banach space.
THE SCHWARZIAN DERIVATIVES OF HARMONIC FUNCTIONS AND UNIVALENCE CONDITIONS
In the paper we obtain some analogues of Nehari’s univalence conditions for sense-preserving functions that are harmonic in the unit disc D = {z ∈ C : |z| < 1}.
Volume and area of intersection of a ball and an infinite parallelepiped
В статье рассматривается тело, являющиеся пересечением шара и прямого произведения квадрата на прямую (бесконечный параллелепипед), причем диаметр шара лежит на оси симметрии параллелепипеда. Вычисляются объем и площадь...