INEQUALITIES VIA GENERALIZED h-CONVEX FUNCTIONS
Journal Title: Проблемы анализа-Issues of Analysis - Year 2018, Vol 7, Issue 2
Abstract
In the paper, we establish some new Hermite-Hadamard-Fej´er type inequalities via generalized h-convex functions, Toader-like convex functions and their variant forms. Several special cases are also discussed. Results proved in this paper can be viewed as significant new contributions in this field.
Authors and Affiliations
M. A. Noor, K. I. Noor, F. Safdar
Inequalities for some basic hypergeometric functions
We establish conditions for the discrete versions of logarithmic concavity and convexity of the higher order regularized basic hypergeometric functions with respect to the simultaneous shift of all its parameters. For a...
Volume and area of intersection of a ball and an infinite parallelepiped
В статье рассматривается тело, являющиеся пересечением шара и прямого произведения квадрата на прямую (бесконечный параллелепипед), причем диаметр шара лежит на оси симметрии параллелепипеда. Вычисляются объем и площадь...
Value range of solutions to the chordal Loewner equation with restriction on the driving function
We consider a value range {g(i,T)} of solutions to the chordal Loewner equation with the restriction |λ(t)| <= c on the driving function. We use reachable set methods and the Pontryagin maximum principle.
О ЛОКАЛЬНОЙ РАЗРЕШИМОСТИ НАЧАЛЬНОЙ ЗАДАЧИ ДЛЯ НЕЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ В БАНАХОВОМ ПРОСТРАНСТВЕ
In this paper it is prooved local solvability of initial problem for nonlinear differential equation in Banah space.
EXTENSION OF STARLIKE FUNCTIONS TO A FINITELY PUNCTURED PLANE
We consider a sequence of functions which are starlike in the unit disk and their logarithmic derivatives are meromorphic with a finite number of simple poles in any boundary domain. These poles are either boundary deter...