Representation of spectra of algebras of block-symmetric analytic functions of bounded type
Journal Title: Карпатські математичні публікації - Year 2016, Vol 8, Issue 2
Abstract
The paper contains a description of a symmetric convolution of the algebra of block-symmetric analytic functions of bounded type on $\ell_1$-sum of the space $\mathbb{C}^2$. We show that the specrum of such algebra does not coincide of point evaluation functionals and we describe characters of the algebra as functions of exponential type with plane zeros.
Authors and Affiliations
V. Kravtsiv, A. V. Zagorodnyuk
On the multiplicative order of elements in Wiedemann's towers of finite fields
We consider recursive binary finite field extensions Ei+1=Ei(xi+1), i≥−1, defined by D. Wiedemann. The main object of the paper is to give some proper divisors of the Fermat numbers Ni that are not equal to the multiplic...
$\omega$-Euclidean domain and Laurent series
It is proved that a commutative domain $R$ is $\omega$-Euclidean if and only if the ring of formal Laurent series over $R$ is $\omega$-Euclidean domain. It is also proved that every singular matrice over ring of formal L...
A new criterion for testing hypothesis about the covariance function of the homogeneous and isotropic random field
In this paper, we consider a continuous in mean square homogeneous and isotropic Gaussian random field. A criterion for testing hypotheses about the covariance function of such field using estimates for its norm in the s...
Some properties of branched continued fractions of special form
The fact that the values of the approximates of the positive definite branched continued fraction of special form are all in a certain circle is established for the certain conditions. The uniform convergence of branched...
Superextensions of three-element semigroups
A family $\mathcal{A}$ of non-empty subsets of a set $X$ is called an {\em upfamily} if for each set $A\in\mathcal{A}$ any set $B\supset A$ belongs to $\mathcal{A}$. An upfamily $\mathcal L$ of subsets of $X$ is said to...