Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide

Journal Title: International Journal of Bioprinting - Year 2016, Vol 2, Issue 2

Abstract

In recent years, hydrogels have been used as important biomaterials for 3D printing of three dimensional tissues or organs. The key issue for printing a successful scaffold is the selection of a material with a good printability. Rheological properties of hydrogels are believed to pay an important role in 3D printability. However the relations between rheological properties of hydrogels and 3D printability have not been extensively studied. In this study, alginate-based hydrogels were prepared as a model material for an extrusion-based printer and graphene oxide was added to modify the rheological properties and 3D printability of the hydrogels. Rheological studies were performed for the hydrogel samples with different formulas. The range of shear rates that the hydrogels suffered during the printing process was deduced. This range of shear rates helped us to select a proper shear rate to investigate the thixotropic properties of the hydrogels. Furthermore, we also defined some measureable parameters to describe and discuss the quality of 3D printing. The present study shows a new approach to analysis of 3D printability of a hydrogel and also provides some suggestion for 3D printing of 3D scaffolds.

Authors and Affiliations

Huijun Li, Sijun Liu and Lin Li

Keywords

Related Articles

The arrival of commercial bioprinters – Towards 3D bioprinting revolution!

The dawn of commercial bioprinting is rapidly advancing the tissue engineering field. In the past few years, new bioprinting approaches as well as novel bioinks formulations have emerged, enabling biological research gro...

Pilot Study of the Biological Properties and Vascularization of 3D Printed Bilayer Skin Grafts

The skin is the largest human organ, and defects in the skin with a diameter greater than 4 cm do not heal without treatment. Allogeneic skin transplantation has been used to allow wound healing, but many grafts do not s...

Application of piezoelectric cells printing on three-dimensional porous bioceramic scaffold for bone regeneration

In recent years, the additive manufacture was popularly used in tissue engineering, as the various technologies for this field of research can be used. The most common method is extrusion, which is commonly used in many...

Novel ultrashort self-assembling peptide bioinks for 3D culture of muscle myoblast cells

The ability of skeletal muscle to self-repair after a traumatic injury, tumor ablation, or muscular disease is slow and limited, and the capacity of skeletal muscle to self-regenerate declines steeply with age. Tissue en...

Mechanisms and modeling of electrohydrodynamic phenomena

The purpose of this paper is to review the mechanisms of electrohydrodynamic (EHD) phenomenon. From this review, researchers and students can learn principles and development history of EHD. Significant progress has been...

Download PDF file
  • EP ID EP678652
  • DOI -
  • Views 158
  • Downloads 0

How To Cite

Huijun Li, Sijun Liu and Lin Li (2016). Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide. International Journal of Bioprinting, 2(2), -. https://europub.co.uk/articles/-A-678652