Stochastic modeling of high-molecular substances electrophoresis using the Ornstein-Uhlenbeck process

Abstract

The aim of the work is to develop a statistical model in the form of the Ornstein-Uhlenbeck trend process for describing the electrophoresis of high-molecular substances. The ability of electrophoresis to divide charged biological macromolecules is widely used in scientific research, chemical production and medicine. Despite the use of the molecular-kinetic theory for estimation of the coefficients of the electrophoretic mobility in the form of the stochastic Langevin equation and the Einstein-Smoluchowski relations emerging from it, which takes into account the Brownian motion of particles of the medium, these models remain deterministic. Such models do not allow one to achieve the required accuracy in the description of electrophoresis of high-molecular substances, especially when analyzing their differences. The Ornstein-Uhlenbeck process is the only non-trivial stationary Gaussian Markov process and has the property of returning to the average. This contributed to its use in financial engineering. At present, the Ornstein-Uhlenbeck process has been studied quite deeply and various modifications and generalizations are of interest, in particular the Ornstein-Uhlenbeck trend process. The Ornstein-Uhlenbeck trend process describes a stochastic process that deviates from the deterministic trend and returns to it with a speed proportional to the deviation. Deterministic trend, as a rule, contains several parameters that must be estimated from observational data. In well-known works on modeling the motion of dielectrics, such an estimate is carried out by well-known statistical methods, for example, by method of moments or maximum likelihood estimation. In the case of electrophoresis, we propose to adopt a linear trend with a coefficient proportional to the electrolytic mobility of the substance in a given environment as a deterministic trend. Statistical processing of experimental data makes it possible to obtain parameter estimates, which allows stochastically simulating the process of electrophoresis. The shape of the electrophoresis model has been determined, and methods have been developed for calculating the parameters of the obtained model according to the data of an experiment on the separation of proteins.

Authors and Affiliations

В. І. Олевський, Ю. Б. Олевська

Keywords

Related Articles

Development and formation of transdisciplinary and interdisciplinary research and the role of computer science

The considered methodologies of transdisciplinary and interdisciplinary scientific research, information technologies of their support directly or indirectly appeal to the scientific picture of the world that will increa...

Стохастическое моделирование электрофореза высокомолекулярных веществ с использованием процесса Орнштейна-Уленбека

Целью работы является разработка статистической модели в виде трендового процесса Орнштейна-Уленбека для описания электрофореза высокомолекулярных веществ. Способность электрофореза разделять заряженные биологические мак...

Про методи динамічної побудови графічного інтерфейсу користувача на основі структури прикладної онтології

Сучасні засоби для розробки користувацького інтерфейсу, а саме – будівники інтерфейсу і системи управління користувацьким інтерфейсом пропонують більш простий, зручний і зрозумілий підхід до розробки інтерфейсу користува...

Decomposition method for solving systems of differential equations for the problems of modelling corrosion deformation processe

The article offers and justifies a method for solving systems of differential equations (SDE) that simulate time changes of stress and strain state due to the influence of corrosive environment (the process of corrosion...

Algorithm for obtaining training samples for a neural network in solving problems of durability prediction for corroding structures

When solving the problems of durability prediction for corroding structures, it is proposed to use computational intelligence technologies, in particular, artificial neural networks. It is necessary to allocate certain r...

Download PDF file
  • EP ID EP610389
  • DOI 10.32434/2521-6406-2018-4-2-60-64
  • Views 134
  • Downloads 0

How To Cite

В. І. Олевський, Ю. Б. Олевська (2018). Stochastic modeling of high-molecular substances electrophoresis using the Ornstein-Uhlenbeck process. Комп’ютерне моделювання: аналіз, управління, оптимізація, 2(2), 60-64. https://europub.co.uk/articles/-A-610389