ТЕОРЕМЫ О РАЗРЕШИМОСТИ НЕЛИНЕЙНЫХ ОПЕРАТОРНЫХ УРАВНЕНИЙ В БАНАХОВЫХ АЛГЕБРАХ С КОНУСОМ
Journal Title: Проблемы анализа-Issues of Analysis - Year 2003, Vol 10, Issue
Abstract
Solvability theorems for nonlinear operator equations in Banach spaces with a cone has given in this paper.
Authors and Affiliations
В. В. МОСЯГИН, Б. М. ШИРОКОВ
ИНВАРИАНТНЫЕ ПОДПРОСТРАНСТВА В ФУНКЦИОНАЛЬНЫХ ПРОСТРАНСТВАХ МЕДЛЕННОГО РОСТА НА СВЕТОВОМ КОНУСЕ В R^3
В функциональных топологических векторных пространствах медленного роста на световом конусе X в R^3 получено полное описание строения всех замкнутых линейных подпространств, инвариантных относительно естественного квазир...
THE THEOREM ON EXISTENCE OF SINGULAR SOLUTIONS TO NONLINEAR EQUATIONS
The aim of this paper is to present some applications of pregularity theory to investigations of nonlinear multivalued mappings. The main result addresses to the problem of existence of solutions to nonlinear equations i...
ОБОБЩЕННАЯ ТЕОРЕМА КАТЕТОВА ДЛЯ ПОЛУНОРМАЛЬНЫХ ФУНКТОРОВ
A generalization of the Katetov Theorem for seminormal functors and the property of hereditarily K-normality is proved.
КЛАССИФИКАЦИЯ ВЫПУКЛЫХ МНОГОГРАННИКОВ
The paper is continuation of the author's series of paper devoted to the solution of Hadviger's problem of covering convex polyhedrons with body images at homothety. The problem under discussion in this paper can be desc...
ON INEQUALITIES OF HERMITE – HADAMARD TYPE INVOLVING AN s-CONVEX FUNCTION WITH APPLICATIONS
Motivated by a recent paper, the author provides some new integral inequalities of Hermite – Hadamard type involving the product of an s-convex function and a symmetric function and applies these new established inequali...