МЕТОДИКА ФІЗИЧНОГО МОДЕЛЮВАННЯ СПЛИВАННЯ АНСАМБЛЮ НЕМЕТАЛЕВИХ ВКЛЮЧЕНЬ У СТАЛЕРОЗЛИВНОМУ КОВШІ
Journal Title: Математичне моделювання - Year 2018, Vol 1, Issue 1
Abstract
METHOD OF PHYSICAL MODELING OF FLOATING OF THE NONMETALLIC INCLUSIONS GROUP IN A TEEMING LADLE Lantukh O.S., Molchanov L.S., Synehin E.V. Abstract The authors considered an important problem for steel quality, consisting in removal of nonmetallic inclusions. The peculiarity of this work is the consideration of the floating process of nonmetallic inclusions in a ladle without the use of any external influences (blowing of inert gas, electromagnetic stirring, etc.), but only by Archimedean force. Such formulation of the problem is relevant for teeming ladles of small capacity, not equipped with blowing devices and electromagnetic stirrers. In order to study the processes of floating up a group of nonmetallic inclusions in steel, the authors have proposed to use the method of physical modeling on the water model. The task, solved in this paper, is the development of a physical modeling technique consisting in determining the similarity numbers for the description of the process, calculating the scales of modeling and selecting substances for imitation of the main phases. On the basis of the carried out work, it is determined that the process of floating up a group of nonmetallic inclusions can be described by Archimedes number, number of homochronality and a dimensionless linear simplex. In view of the fact that the linear scale of the model satisfying these criteria is 1.7: 1 for water, a hypothesis of self-similarity of the dimensionless linear simplex has been put forward. The hypothesis makes possible an adequate simulation of floating up a group of nonmetallic inclusions up to 300 μm on models at a scale of 1:10. An experiment plan is proposed to confirm this hypothesis. The consequences of confirmation and refutation of the hypothesis based on modeling results are considered. The technique proposed by the authors after an insignificant development will allow to carry out adequate physical modeling of the process of floating of nonmetallic inclusions in the ladle under various external influences, in particular, during inert gas blowing, electromagnetic stirring, etc. The results of the experiment with the developed technique will allow to determine the holding time of the teeming ladle sufficient for the floatind up the nonmetallic inclusions of various sizes in industrial conditions. References [1] Filippov G.A, Rodionova P.G., Baklanova O.N. Corrosion resistance of steel pipelines. Tehnologiya metallov – Technology of metals, 2004, no.2, pp. 24–27 (in Russian). [2] Okhotskyi V.B., Kostolov O.L., Cimonov V.K. et al. Teoriia metalurhiinykh protsesiv [Theory of metallurgical processes]. Kyiv, 1997. 512 p. [3] Velychko O.H., Stoianov O.M., Boichenko B.M., Niziaiev K.G. Tekhnolohii pidvyshchennia yakosti stali [Technologies for improving the quality of steel]. Dnipropetrovs’k, 2016. 196 p. [4] Ziborov A.V., Zyiryanov V.V., Kuznetsov M.S., Kulagin S.A. et al. Vliyanie tehnologii vnepechnoy obrabotki na zagryaz-nYonnost stali nemetallicheskimi vklyucheniyami [The influence of the secondary treatment technology on the pollution became nonmetallic inclusions] Metallurg, 2008, no. 3, pp. 39–40. [5] Siddiki F., Kodak A.V., Yavtushenko P.M., Trotsan A.I. et al. Vliyanie parametrov vnepechnoy obrabotki stali St10 na zagryaznennost nepreryivnolitoy zagotovki (krug 180 mm) nemetallicheskimi vklyucheniyami [Influence of the parameters of the out-of-furnace treatment of steel St10 on the contamination of a continuously cast billet (180 mm round) with non-metallic inclusions] Protsessyi litya, 2008, no. 1, pp. 38–40. [6] Enders V.V., Yakshuk D.S., Gulyaev M.P., Pivtsaev V.V. Optimizatsiya tehnologii vnepechnoy obrabotki vyi-sokouglerodistoy stali s tselyu snizheniya soderzha-niya oksidnyih nemetallicheskih vklyucheniy [Optimization of out-of-furnace treatment of high-carbon steel in order to reduce the content of oxide non-metallic inclusions] OAO «Chermetinformatsiya». Byulleten «Chernaya metallurgiya», 2003, no. 8, pp. 26–29. [7] Mastryukov B.S. Teplofizika metallurgicheskih protsessov [Thermophysics of metallurgical processes]. Moscow, 1996. 268 p. [8] Frolov Yu.G. Kurs kolloidnoy himii. Poverhnost-nyie yavleniya i dispersnyie sistemyi [Course of colloid chemistry. Surface phenomena and dispersed systems]. Moscow, 1988. 464 p.
Authors and Affiliations
О. С. Лантух, Л. С. Молчанов, Є. В. Синегін
Дослідження розподілу випадкових хорд у сфері
STUDY OF THE DISTRIBUTION OF RANDOM CHORDS IN THE SPHERE Stroieva V.O, Avramenko V.I. Abstract In this paper we consider the problem of determining the length of a random chord, which is often associated with problems s...
Канонічні перетворення в калібрувальних теоріях
We give transformations of currents for quantities stored due gauge symmetries and their superpotentialsunder canonical transformations of Lagrangians
Анализ термодинамических характеристик многокомпонентного аморфного сплава на основе железа: экспериментальное исследование и теоретическая интерпрета-ция
ANALYSIS OF THERMODYNAMIC CHARACTERISTICS OF A MULTICOMPONENT AMORPHOUS IRON-BASE ALLOY: EXPERIMENTAL STUDY AND THEORETICAL INTERPRETATION Goranskiy G.G., Khina B.B., Sereda B.P. Abstract The paper is devoted to the the...
МОДЕЛЮВАННЯ КОНВЕКТИВНОЇ ТЕПЛОПРОВІДНОСТІ ДВОШАРОВОГО СЕРЕДОВИЩА ПРИ НЕОДНОРІДНИХ ГРАНИЧНИХ УМОВАХ
PROBLEM OF CONVECTIVE HEAT CONDUCTIVITY OF A DOUBLE ENVIRONMENT UNDER HEAVY BORDER CONDITIONS Pyshnograev Y.N., Shtanko A.I. Abstract In this paper, we consider the special cases of the application of the method of fini...
Моделирование ближнего порядка аморфных сплавов металл-металлоид
MODELING OF THE SHORT–RANGE ORDER AMORPHY ALLOYS OF METAL-METALOID Gulivets A.N., Baskevich A.S. Abstract Amorphous metal alloys metal-metalloid possess a complex of unique physical-chemical properties and are a new cla...